Math 10A
Worksheet, Discussion \#5; Friday, 6/22/2018
Instructor name: Roy Zhao

1 Derivative Definition

1.1 Concepts

1. The derivative of a function f at x_{0} can be written as

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} .
$$

1.2 Example

2. Find $\lim _{x \rightarrow 1} \frac{e^{3 x}-e^{3}}{x^{2}-1}$.

Solution: We can factor the bottom as $(x-1)(x+1)$. Letting $f(x)=e^{3 x}$, we recognize this derivative as

$$
\lim _{x \rightarrow 1} \frac{e^{3 x}-e^{3}}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1} \cdot \frac{1}{x+1}=\frac{f^{\prime}(1)}{2}=\frac{3 e}{2} .
$$

1.3 Problems

3. Find $\lim _{x \rightarrow 1} \frac{e^{\sqrt{x}}-e}{x^{2}-3 x+2}$.

Solution: Let $f(x)=e^{\sqrt{x}}$ so that $f^{\prime}(x)=e^{\sqrt{x}} \cdot \frac{1}{2 \sqrt{x}}$. Then we can factor the bottom as $(x-1)(x-2)$ and the limit is

$$
\lim _{x \rightarrow 1} \frac{e^{\sqrt{x}}-e}{x^{2}-3 x+2}=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1} \cdot \frac{1}{x-2}=\frac{f^{\prime}(1)}{-1}=\frac{-e}{2} .
$$

4. Find $\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}+x}$.

Solution: Let $f(x)=\cos x$. Then the limit is

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}+x}=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0} \cdot \frac{1}{x+1}=\frac{f^{\prime}(0)}{1}=0
$$

5. Find $\lim _{x \rightarrow \pi} \frac{\sin x}{x-\pi}$.

Solution: Let $f(x)=\sin x$. Then $f(\pi)=\sin \pi=0$. So

$$
\lim _{x \rightarrow \pi} \frac{\sin x}{x-\pi}=\lim _{x \rightarrow \pi} \frac{f(x)-f(\pi)}{x-\pi}=f^{\prime}(\pi)=\cos (\pi)=-1
$$

6. Find $\lim _{x \rightarrow 0} \frac{\tan x}{x}$.

Solution: Let $f(x)=\tan x$. Then $f(0)=0$ and so

$$
\lim _{x \rightarrow 0} \frac{\tan x}{x}=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=f^{\prime}(0)=\sec ^{2}(0)=1
$$

1.4 Extra Problems

7. Find $\lim _{x \rightarrow 0} \frac{\sin x}{x}$.

Solution: Let $f(x)=\sin x$. Then $f(\pi)=\sin 0=0$. So

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=f^{\prime}(0)=\cos (0)=1
$$

8. Find $\lim _{x \rightarrow \pi / 4} \frac{\cos x-\sqrt{2} / 2}{x-\pi / 4}$.

Solution: Let $f(x)=\cos x$. Then $f(\pi / 4)=\sqrt{2} / 2$. So

$$
\lim _{x \rightarrow \pi / 4} \frac{\cos x-\sqrt{2} / 2}{x-\pi / 4}=\lim _{x \rightarrow \pi / 4} \frac{f(x)-f(\pi / 4)}{x-\pi / 4}=f^{\prime}(\pi / 4)=-\sin \pi / 4=\frac{-\sqrt{2}}{2} .
$$

9. Find $\lim _{x \rightarrow \pi / 3} \frac{\sin x-\sin (\pi / 3)}{x-\pi / 3}$.

Solution: Let $f(x)=\sin x$. So

$$
\lim _{x \rightarrow \pi / 3} \frac{\sin x-\sin (\pi / 3)}{x-\pi / 3}=\lim _{x \rightarrow \pi / 3} \frac{f(x)-f(\pi / 3)}{x-\pi / 3}=f^{\prime}(\pi / 3)=\cos \pi / 3=\frac{1}{2} .
$$

10. Find $\lim _{x \rightarrow \pi / 3} \frac{\sin x-\sqrt{3} / 2}{x-\pi / 3}$.

Solution: Let $f(x)=\sin x$. Then $f(\pi / 3)=\sqrt{3} / 2$. So

$$
\lim _{x \rightarrow \pi / 3} \frac{\sin x-\sqrt{3} / 2}{x-\pi / 3}=\lim _{x \rightarrow \pi / 3} \frac{f(x)-f(\pi / 3)}{x-\pi / 3}=f^{\prime}(\pi / 3)=\cos \pi / 3=\frac{1}{2}
$$

